
Python Decorators
Unleashed

Harness the Power of Function
and Class Enhancements

become a python power programmer today

Contents

Introduction 3
1. Introduction to Decorators 4

1.1 What are Decorators? 5
1.2 Why are Decorators Useful in Python? 5
1.3: How do Decorators Work in Python? 6

2. Function Decorators 7
2.1 Decorating Functions With the@ Symbol 8
2.2 Writing Your Own Function Decorators 8
2.3 Applying Multiple Decorators to a Single Function 9
2.4 Decorators with Arguments 9
Section 2.5: Decorator Classes 10
2.6 Chaining Decorators 11

3. Class Decorators 12
3.1 Decorating Classes with the@ Symbol 13
3.2 Writing Your Own Class Decorators 13
Section 3.3: Applying Multiple Decorators to a Single Class 14
Section 3.4: Decorators with Arguments 14

4. Decorators in Practice 15
Section 4.1: Using Decorators to Simplify Code 16
Section 4.2: Using Decorators for Debugging and Logging 16
Section 4.3: Using Decorators for Performance Optimization 17
Section 4.4: Using Decorators for Data Validation and Error Checking 17
Section 4.5: Decorator Best Practices 18

5. Advanced Topics in Decorators 19
Section 5.1: Nested Decorators 20
Section 5.2: Decorators with State 20
Section 5.3: Decorators as Context Managers 21
Section 5.4: Decorator Design Patterns 22

6. Conclusion and Next Steps 24
Section 6.1: Recap of Key Concepts and Techniques 24
Section 6.2: Suggestions for Further Learning and Exploration 24
Section 6.3: Resources for Finding and Using Decorators in Python 24

1

About Python Power Programming

Welcome to Python Power Programming (https://pypowerprog.com/), where the sparks of

Python brilliance ignite! Leave the "Hello, World" behind as we delve deep into the realm of

intermediate to advanced Python programming. Brace yourself for a thrilling journey through

intricate concepts, expert tutorials, and cutting-edge discoveries. We're not just another

website; we're your passport to a world where Pythonmastery becomes second nature. Join us

as we unravel the secrets of this dynamic language, sharing invaluable insights, news, and

handpicked content from top-notch sites and blogs. Get ready to unleash your Python powers

and embrace a new era of programming prowess!

2

https://pypowerprog.com/

Introduction

Python is a versatile and powerful programming language used by data scientists, software

engineers, and developers alike. Among its many features, Python offers decorators, a way to

modify or enhance the behavior of functions or classes at runtime. Decorators are a

fundamental concept in Python that can help you write more efficient, readable, and

maintainable code.

In this ebook, we'll explore the world of decorators in Python. We'll start by defining what

decorators are, why they're useful, and how they work in Python. We'll then delve into the

different types of decorators available in Python, such as function decorators and class

decorators, and we'll cover how to write your own decorators from scratch. We'll also explore

more advanced topics such as decorators with arguments, decorators as context managers,

and decorator design patterns.

Using decorators, we can simplify code, debug and log more easily, optimize performance, and

validate data inputs. For example, decorators can allow you to easily add logging or timing

functionality to your code, without cluttering your main codebase. Similarly, decorators can

help you to enforce input validation rules or handle exceptions in a cleaner way. Overall,

decorators are a powerful and flexible tool that can help you write more efficient and

maintainable code.

Whether you're a beginner or an experienced Python developer, this ebook will provide you

with a comprehensive guide to using decorators in Python. We'll provide clear examples,

step-by-step explanations, and practical tips for how to use decorators effectively. By the end

of this book, you'll have a solid understanding of decorators and how to apply them in your

own Python projects.

If you're ready to dive into the world of decorators, let's get started!

3

1. Introduction to Decorators

Python decorators are a powerful and versatile feature of the language that allow you to

modify or enhance the behavior of functions or classes at runtime. Decorators are widely used

in Python programming, and understanding how they work is essential for any Python

developer.

In this chapter, we'll cover the basics of decorators, including what they are, why they're

useful, and how they work in Python.

1.1 What are Decorators?

Decorators are essentially functions that can modify or enhance the behavior of other

functions or classes. They are a type of metaprogramming that allows you to modify code at

runtime, rather than at compile-time. This can be useful in situations where you need to add

functionality to existing code, or when you want to create more flexible and reusable code.

In Python, decorators are denoted by the '@' symbol followed by the decorator function name.

When a decorator is applied to a function or class, it modifies its behavior in some way. For

example, a decorator can add logging or timing functionality to a function, or it can enforce

input validation rules on a class.

Decorators can be thought of as a way of wrapping one piece of code with another piece of

code. When a decorator is applied to a function, it takes the original function as an argument

and returns a new function that wraps it. This new function can add functionality to the

original function, such as logging or timing. When a decorator is applied to a class, it modifies

the behavior of the class itself, rather than its methods.

Decorators are a powerful tool in Python because they allow you to separate out cross-cutting

concerns into separate functions. For example, if you need to log the execution time of several

functions in your program, you can create a timing decorator that wraps each function and

adds the necessary timing code. This way, you don't have to clutter your main codebase with

repetitive timing code, and you can easily modify or remove the timing functionality later if

needed.

4

1.2 Why are Decorators Useful in Python?

Decorators are useful in Python for a number of reasons. Firstly, they can help you to write

more efficient andmaintainable code by reducing repetition and clutter in your main codebase.

By separating out cross-cutting concerns into separate functions, you can make your code

easier to read and modify. For example, if you have several functions that require input

validation, you can create a decorator that handles the validation and apply it to each function.

Secondly, decorators can simplify common tasks such as logging, timing, or input validation,

allowing you to focus on the core logic of your program. For example, you can create a logging

decorator that automatically logs the inputs and outputs of each function in your program.

This can be useful for debugging andmonitoring the performance of your program.

Finally, decorators can help you to create more flexible and reusable code by separating out

functionality into modular pieces. By creating decorators that add specific functionality to your

code, you can reuse those decorators across multiple functions and classes. This can save you

time and effort, andmake your code more maintainable in the long run.

1.3: How do Decorators Work in Python?

Decorators work by wrapping the original function or class with another function that modifies

its behavior. When a decorator is applied to a function, it takes the original function as an

argument and returns a new function that wraps it. This new function can add functionality to

the original function, such as logging or timing. When a decorator is applied to a class, it

modifies the behavior of the class itself, rather than its methods.

In Python, you can define your own decorators using the '@' symbol followed by a decorator

function name. Decorator functions can take arguments and return functions, allowing you to

create flexible and reusable decorators. You can also apply multiple decorators to a single

function or class, allowing you to combine different functionalities in a modular way.

One important thing to keep in mind when using decorators in Python is that they can change

the behavior of your code in unexpected ways if not used correctly. For example, if you apply a

decorator to a function that is already decorated, you may get unexpected results. It's

important to understand how decorators work and to use them judiciously to avoid introducing

bugs into your code.

5

Another thing to keep in mind is that decorators can have performance implications, especially

if you apply them to functions that are called frequently or have large inputs. When using

decorators, it's important to benchmark your code to ensure that the decorator is not

introducing significant overhead.

Overall, decorators are a powerful and flexible feature of Python that allow you to modify or

enhance the behavior of functions or classes at runtime. By using decorators, you can write

more efficient, readable, and maintainable code, and create more flexible and reusable

functions and classes. In the next chapter, we'll explore function decorators in more detail and

provide practical examples of how to use them.

6

2. Function Decorators

Function decorators are a powerful tool in Python that allow you to modify or enhance the

behavior of functions at runtime. In this chapter, we'll cover the basics of function decorators,

including how to apply them using the @ symbol, how to write your own function decorators,

how to apply multiple decorators to a single function, and how to use decorators with

arguments.

2.1 Decorating Functions With the@ Symbol

The most common way to apply a decorator to a function in Python is to use the @ symbol

followed by the decorator function name. This syntax is called "pie syntax," because the

decorator functions are stacked on top of each other like a pie. Using this syntax can make it

easier to read and write code, as it allows you to separate out the function's behavior from the

decorator's behavior.

When a decorator is applied to a function, the decorator function takes the original function as

an argument and returns a new function that wraps it. This new function can add functionality

to the original function, such as logging or timing. The decorator function is essentially a

higher-order function that takes a function as an argument and returns a new function that

modifies its behavior.

2.2 Writing Your Own Function Decorators

You can also write your own function decorators in Python. Function decorators are simply

functions that take a function as an argument and return a new function that wraps the

original function. This can be useful when you need to add functionality to existing code, or

when you want to create more flexible and reusable code.

To write your own function decorator, you need to define a function that takes a function as an

argument and returns a new function that wraps the original function. This new function can

add any functionality that you want, such as timing or logging. For example, to write a timing

decorator, you might write:

7

import time

def timing_decorator(func):

def wrapper():

start_time = time.time()

result = func()

end_time = time.time()

print(f"Elapsed time: {end_time - start_time}")

return result

return wrapper

This decorator function takes a function as an argument, wraps it in a new function that adds

timing functionality, and returns the new function. You can then apply this decorator to any

function that you want to time.

2.3 ApplyingMultiple Decorators to a Single Function

You can also apply multiple decorators to a single function in Python. When you apply multiple

decorators, the function is wrapped by each decorator in turn, from the inside out. This can be

useful when you need to apply multiple types of functionality to a function, such as logging,

timing, and input validation.

To apply multiple decorators to a single function, you simply stack them on top of each other

using the @ syntax. For example, to apply both a timing decorator and a logging decorator to a

function, you might write:

@timing_decorator

@logging_decorator

def my_function():

function body

In this case, the my_function function is first wrapped by the logging_decorator function,

which adds logging functionality, and then wrapped by the timing_decorator function, which

adds timing functionality.

2.4 Decorators with Arguments

You can also create decorators that take arguments in Python. To do this, you need to define a

decorator function that takes arguments, and then return a new function that takes a function

8

as an argument and returns a new function that wraps the original function. This can be useful

when you need to customize the behavior of a decorator for different use cases.

For example, to create a timing decorator that takes an argument specifying the time unit, you

might write:

import time

def timing_decorator(time_unit):

def decorator(func):

def wrapper():

start_time = time.time()

result = func()

end_time = time.time()

print(f"Elapsed time: {(end_time - start_time) / time_unit}")

return result

return wrapper

return decorator

In this case, the timing_decorator function takes an argument specifying the time unit, and

returns a new function that takes a function as an argument and returns a new function that

wraps the original function. The wrapper function calculates the elapsed time and divides it by

the time unit argument before printing it.

Decorators with arguments can be used in a variety of scenarios. For instance, you might use a

decorator with arguments to enforce different levels of logging depending on the function or

method being called, or to validate different types of inputs depending on the specific use case.

Section 2.5: Decorator Classes

In addition to using functions as decorators in Python, you can also use classes as decorators.

Decorator classes are defined by implementing the __call__ method, which allows instances

of the class to be called like functions.

Decorator classes are useful when you need to maintain state across multiple calls to the

decorated function or when you want to reuse the same decorator across multiple functions.

For example, you might use a decorator class to count the number of times a function is called:

9

class CallCounter:

def __init__(self, func):

self.func = func

self.counter = 0

def __call__(self, *args, **kwargs):

self.counter += 1

return self.func(*args, **kwargs)

In this example, the CallCounter class takes a function as an argument and stores it as an

instance variable. The __call__ method increments the counter each time the function is

called and returns the result of calling the original function.

To use the decorator class, you would instantiate it with the function you want to decorate, and

then call the resulting instance:

@CallCounter

def my_function():

function body

my_function() # calls my_function and increments the counter

2.6 Chaining Decorators

In addition to applying multiple decorators to a single function, you can also chain decorators

together. Decorator chaining allows you to apply multiple decorators to a single function in a

specific order.

To chain decorators together, you can simply apply each decorator to the previous decorator's

result using the @ syntax. For example, to chain three decorators together, you might write:

@decorator1

@decorator2

@decorator3

def my_function():

function body

10

In this case, the my_function function is first wrapped by the decorator3 function, then by the

decorator2 function, and finally by the decorator1 function. The result is a function that has

beenmodified by all three decorators.

In summary, function decorators are a powerful tool in Python that allow you to modify or

enhance the behavior of functions at runtime. By using the @ syntax, writing your own

decorators, applying multiple decorators to a single function, using decorators with

arguments, and exploring decorator classes and chaining, you can create more efficient,

readable, and maintainable code. In the next chapter, we'll explore class decorators and how to

use them in Python.

11

3. Class Decorators

In addition to function decorators, Python also supports class decorators. Class decorators are

similar to function decorators, but they allow you to modify or enhance the behavior of classes

at runtime. In this chapter, we'll cover the basics of class decorators, including how to apply

them using the @ symbol, how to write your own class decorators, how to apply multiple

decorators to a single class, and how to use decorators with arguments.

3.1 Decorating Classes with the@ Symbol

The @ symbol can also be used to apply decorators to classes in Python. When a decorator is

applied to a class, the decorator function takes the original class as an argument and returns a

new class that wraps it. This new class can add functionality to the original class, such as

logging or timing.

For example, to apply a logging decorator to a class, you might write:

@logging_decorator

class MyClass:

class body

In this case, the MyClass class is wrapped by the logging_decorator function, which adds

logging functionality.

3.2 Writing Your Own Class Decorators

You can also write your own class decorators in Python. Class decorators are simply functions

that take a class as an argument and return a new class that wraps the original class. This can

be useful when you need to add functionality to existing classes, or when you want to create

more flexible and reusable code.

To write your own class decorator, you need to define a function that takes a class as an

argument and returns a new class that wraps the original class. This new class can add any

functionality that you want, such as logging or validation. For example, to write a decorator

that adds a description attribute to a class, you might write:

12

def description_decorator(cls):

cls.description = 'This is a class with a description attribute.'

return cls

This decorator function takes a class as an argument, wraps it in a new class that adds a

description attribute, and returns the new class. You can then apply this decorator to any class

that you want to add a 'description' attribute to.

Section 3.3: ApplyingMultiple Decorators to a Single Class

You can also apply multiple decorators to a single class in Python. When you apply multiple

decorators, the class is wrapped by each decorator in turn, from the inside out. This can be

useful when you need to apply multiple types of functionality to a class, such as logging,

timing, and input validation.

To apply multiple decorators to a single class, you simply stack them on top of each other

using the @ syntax. For example, to apply both a logging decorator and a timing decorator to a

class, you might write:

@logging_decorator

@timing_decorator

class MyClass:

class body

In this case, the MyClass class is first wrapped by the timing_decorator function, which adds

timing functionality, and then wrapped by the logging_decorator function, which adds

logging functionality.

Section 3.4: Decorators with Arguments

You can also create decorators that take arguments in Python. To do this, you need to define a

decorator function that takes arguments, and then return a new function that takes a class as

an argument and returns a new class that wraps the original class. This can be useful when you

need to customize the behavior of a decorator for different use cases.

For example, to create a decorator that adds a description attribute to a class with a custom

description, you might write:

13

def description_decorator(description):

def decorator(cls):

cls.description = description

return cls

return decorator

In this case, the description_decorator function takes an argument specifying the custom

description, and returns a new function that takes a class as an argument and returns a new

class that wraps the original class. The wrapper class adds a description attribute with the

custom description to the original class.

To use the decorator with arguments, you would call it with the custom description and then

apply the resulting decorator function to the class:

@description_decorator('This is a custom description.')

class MyClass:

class body

In this example, the MyClass class is wrapped by the description_decorator function with the

custom description 'This is a custom description’.

In summary, class decorators are a powerful tool in Python that allow you to modify or

enhance the behavior of classes at runtime. By using the @ syntax, writing your own

decorators, applying multiple decorators to a single class, and using decorators with

arguments, you can create more efficient, readable, and maintainable code. In the next

chapter, we'll explore advanced decorator topics and best practices in Python.

14

4. Decorators in Practice

In this chapter, we'll explore how decorators can be used in practice to simplify code, aid in

debugging and logging, optimize performance, and validate data and check for errors.

Section 4.1: Using Decorators to Simplify Code

One of the most common uses for decorators is to simplify code. Decorators can be used to

encapsulate functionality that is used across multiple functions or classes, reducing code

duplication and improving maintainability.

For example, you might write a decorator to implement input validation for multiple

functions, rather than repeating the validation code in each function:

def validate_input(func):

def wrapper(*args, **kwargs):

validate input here

result = func(*args, **kwargs)

return result

return wrapper

With this decorator in place, you can simply apply it to each function that requires input

validation:

@validate_input

def my_function(arg1, arg2):

function body

Section 4.2: Using Decorators for Debugging and Logging

Decorators can also be used for debugging and logging. By wrapping a function or method in a

logging decorator, you can easily track the execution of your code and debug any issues that

arise.

For example, you might write a logging decorator to log the input arguments and output result

of a function:

15

def log_function(func):

def wrapper(*args, **kwargs):

log input arguments here

result = func(*args, **kwargs)

log output result here

return result

return wrapper

With this decorator in place, you can apply it to any function that requires logging:

@log_function

def my_function(arg1, arg2):

function body

Section 4.3: Using Decorators for Performance Optimization

Decorators can also be used for performance optimization. By wrapping a function or method

in a timing decorator, you can easily measure the execution time of your code and identify any

bottlenecks.

For example, you might write a timing decorator to measure the execution time of a function:

import time

def timing_decorator(func):

def wrapper(*args, **kwargs):

start_time = time.time()

result = func(*args, **kwargs)

end_time = time.time()

print(f"Elapsed time: {end_time - start_time}")

return result

return wrapper

With this decorator in place, you can apply it to any function that requires timing:

@timing_decorator

def my_function(arg1, arg2):

function body

16

Section 4.4: Using Decorators for Data Validation and Error Checking

Decorators can also be used for data validation and error checking. By wrapping a function or

method in a validation decorator, you can ensure that the input data is of the correct type and

format, and raise an error if it is not.

For example, you might write a validation decorator to ensure that a function's input

arguments are of the correct type:

def validate_types(*types):

def decorator(func):

def wrapper(*args, **kwargs):

for arg, arg_type in zip(args, types):

if not isinstance(arg, arg_type):

raise TypeError(f"Expected {arg_type}, but got {type(arg)}")

result = func(*args, **kwargs)

return result

return wrapper

return decorator

With this decorator in place, you can apply it to any function that requires type validation:

@validate_types(int, str)

def my_function(arg1, arg2):

function body

In summary, decorators are a powerful tool in Python that can be used in a variety of practical

ways to simplify code, aid in debugging and logging, optimize performance, and validate data

and check for errors. By using decorators effectively, you can write more efficient, readable,

andmaintainable code.

Section 4.5: Decorator Best Practices

While decorators can be a powerful tool, it's important to use them carefully and in accordance

with best practices. Here are a few best practices to keep in mind when using decorators in

Python:

17

1. Keep decorators simple: Decorators should be used to encapsulate simple functionality

that is used across multiple functions or classes. If a decorator becomes too complex, it

may be better to refactor the code to use a different approach.

2. Use descriptive names: Decorator names should be descriptive and clearly indicate their

purpose. This makes it easier for other developers to understand what the decorator

does and when it should be used.

3. Use functools.wraps: When writing decorators, it's important to preserve the original

function's name and docstring. To do this, use the functools.wraps function to wrap the

inner function in the decorator.

4. Avoid applying too many decorators: While it's possible to apply multiple decorators to

a single function or class, it's generally best to keep the number of decorators to a

minimum. This makes the code easier to understand and debug.

5. Test your decorators: Before using a decorator in production code, be sure to test it

thoroughly to ensure that it works as expected. This can help to identify and fix any

issues before they cause problems in production.

By following these best practices, you can use decorators effectively in your Python code and

improve the overall quality andmaintainability of your codebase.

In conclusion, decorators are a powerful and versatile tool in Python that can be used in a

variety of ways to simplify code, aid in debugging and logging, optimize performance, and

validate data and check for errors. By using decorators effectively and following best practices,

you can write more efficient, readable, andmaintainable code.

18

5. Advanced Topics in Decorators

In this chapter, we'll explore advanced topics in decorators, including nested decorators,

decorators with state, decorators as context managers, and decorator design patterns.

Section 5.1: Nested Decorators

Nested decorators are decorators that are applied within other decorators. Nested decorators

can be useful when you need to apply multiple layers of functionality to a function or class.

For example, you might write a nested logging and timing decorator to log the input

arguments and output result of a function, and also measure its execution time:

def logging_decorator(func):

def wrapper(*args, **kwargs):

log input arguments here

result = func(*args, **kwargs)

log output result here

return result

return wrapper

def timing_decorator(func):

def wrapper(*args, **kwargs):

start_time = time.time()

result = func(*args, **kwargs)

end_time = time.time()

print(f"Elapsed time: {end_time - start_time}")

return result

return wrapper

@timing_decorator

@logging_decorator

def my_function(arg1, arg2):

function body

In this case, the my_function function is first wrapped by the logging_decorator function,

which adds logging functionality, and then wrapped by the timing_decorator function, which

adds timing functionality.

19

Section 5.2: Decorators with State

Decorators with state are decorators that maintain some internal state between calls. This can

be useful when you need to track some state across multiple calls to a function or class.

For example, you might write a counter decorator that counts the number of times a function

has been called:

def counter_decorator(func):

count = 0

def wrapper(*args, **kwargs):

nonlocal count

count += 1

result = func(*args, **kwargs)

return result

wrapper.count = lambda: count

return wrapper

@counter_decorator

def my_function():

function body

my_function()

print(my_function.count()) # output: 1

my_function()

print(my_function.count()) # output: 2

In this case, the counter_decorator function maintains an internal count variable, which is

incremented each time the function is called. The count variable is exposed through a lambda

function that can be accessed from outside the decorator.

Section 5.3: Decorators as Context Managers

Decorators can also be used as context managers in Python. Context managers are objects that

define a context for a block of code, such as opening and closing a file. Decorators as context

managers can be useful when you need to set up and tear down resources before and after a

function or class is called.

For example, you might write a context manager decorator that opens and closes a file:

20

import contextlib

@contextlib.contextmanager

def open_file(filename):

f = open(filename, 'w')

yield f

f.close()

with open_file('file.txt') as f:

f.write('Hello, world!')

In this case, the open_file decorator defines a context for opening and closing a file. The yield

statement defines the block of code that should be executed within the context, and the with

statement defines the scope of the context.

Section 5.4: Decorator Design Patterns

Finally, there are a number of decorator design patterns that can be used to solve common

problems in software development. Some common decorator design patterns include caching,

memoization, and retry.

For example, you might write a memoization decorator to cache the results of a function:

def memoize_decorator(func):

cache = {}

def wrapper(*args):

if args not in cache:

cache[args] = func(*args)

return cache[args]

return wrapper

@memoize_decorator

def my_function(arg1, arg2):

function body

result = my_function(1, 2)

In this case, the memoize_decorator function maintains an internal cache dictionary, which

stores the results of previous calls to the function. If the function is called with the same

arguments again, the result is retrieved from the cache instead of recalculating it.

21

In conclusion, advanced topics in decorators, such as nested decorators, decorators with state,

decorators as context managers, and decorator design patterns, can help you write more

powerful and flexible Python code. By using decorators effectively and creatively, you can solve

a wide range of problems and improve the overall quality andmaintainability of your codebase.

22

6. Conclusion and Next Steps

In this ebook, we've covered a variety of topics related to decorators in Python, including the

basics of decorators, function decorators, class decorators, practical uses for decorators,

advanced topics in decorators, andmore.

Section 6.1: Recap of Key Concepts and Techniques

To recap, decorators are a powerful tool in Python that allow you to modify or enhance the

behavior of functions, classes, and other objects at runtime. By using decorators, you can

encapsulate common functionality, aid in debugging and logging, optimize performance,

validate data, andmore.

We've covered a number of key concepts and techniques related to decorators, including the

use of the @ syntax to apply decorators, writing your own function and class decorators,

applying multiple decorators to a single object, using decorators with arguments, and

exploring advanced topics such as nested decorators, decorators with state, decorators as

context managers, and decorator design patterns.

Section 6.2: Suggestions for Further Learning and Exploration

If you're interested in learning more about decorators, there are a number of resources

available to you. Here are a few suggestions for further learning and exploration:

● Python documentation: The official Python documentation has a section on decorators

that provides more in-depth information and examples.

● Online courses: There are a number of online courses and tutorials that cover decorators

in Python, including courses on platforms like Udemy, Coursera, and edX.

● Books: There are several books on Python that cover decorators in depth, including

"Python Decorators Handbook" by Matt Harrison and "Python Tricks: A Buffet of

Awesome Python Features" by Dan Bader.

Section 6.3: Resources for Finding and Using Decorators in Python

Finally, there are a number of resources available for finding and using decorators in Python.

Here are a few suggestions:
23

● PyPI: The Python Package Index (PyPI) has a number of libraries and modules that

provide decorators for various use cases.

● GitHub: GitHub is a great place to find open source projects that use decorators. You can

search for projects using the 'decorator' tag or keyword.

● Stack Overflow: Stack Overflow is a popular Q&A site where you can find answers to

common questions related to decorators in Python.

In conclusion, decorators are a powerful tool in Python that can help you write more efficient,

readable, and maintainable code. By using decorators effectively and exploring their advanced

features and design patterns, you can take your Python programming skills to the next level.

24

